Acta Crystallographica Section E

Structure Reports

 OnlineISSN 1600-5368

Shan Gao,* Ji-Wei Liu, Li-Hua Huo, Hui Zhao and Jing-Gui Zhao

School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, People's Republic of China

Correspondence e-mail:
shangao67@yahoo.com

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.054$
$w R$ factor $=0.109$
Data-to-parameter ratio $=15.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

catena-Poly[[aquabis(1H-imidazole- $\left.\left.\kappa N^{3}\right) \operatorname{copper}(\mathrm{II})\right]$ -μ-benzene-1,4-dioxyacetato- $\left.\kappa^{2} O: O^{\prime}\right]$

In the title coordination polymer, also called catena-poly[[aquabis($1 H$-imidazole- κN^{3})copper(II)]- μ-phenylenedioxy-diacetato- $\left.\kappa^{2} O: O^{\prime}\right],\left[\mathrm{Cu}(1,4-\mathrm{BDOA})\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$ (where $1,4-\mathrm{BDOA}^{2-}$ is benzene-1,4-dioxyacetate, $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}$), the $\mathrm{Cu}^{\text {II }}$ atom is five-coordinate involving two O atoms of the 1,4BDOA ligand, two N atoms of imidazole ligands and one water molecule, displaying a distorted square-pyramidal coordination geometry. The $\mathrm{Cu}^{\text {II }}$ atoms are bridged by carboxylate groups, forming a one-dimensional zigzag chain. The adjacent $\mathrm{Cu} \cdots \mathrm{Cu}$ distance is 12.656 (5) \AA. Furthermore, such chains are linked by hydrogen-bond interactions, resulting in a three-dimensional network.

Comment

Phenylenedioxydiacetic acids $\left(\mathrm{BDOAH}_{2}\right)$, biologically active compounds that are widely used in agriculture, are a family of flexible multidentate carboxylate ligands, which could possess the multiple coordination modes and the capability of forming coordination architectures of diverse sizes and shapes. However, only a few complexes with BDOAH_{2} ligands have been structurally characterized thus far, and the majority of these contain 1,2- BDOAH_{2} (Smith et al., 1991; McCann et al., 1994). In particular, the coordination chemistry of (p phenylenedioxy)diacetic acid (or benzene-1,4-dioxyacetic acid) has been documented very little to date. As a contribution to this field, we have previously reported the structures of two one-dimensional chain complexes containing the 1,3BDOAH_{2} ligand, $\left\{\left[\mathrm{Zn}(1,3-\mathrm{BDOA})\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}\right\}_{n}$ (Gao et al., 2004) and $\left\{[\mathrm{Cu}(1,3-\mathrm{BDOA})(\text { bipy })] \cdot \mathrm{H}_{2} \mathrm{O}\right\}_{n}$, (II), in which the $\mathrm{Cu}^{\mathrm{II}}$ atom shows a square-pyramidal configuration (Liu et al., 2004).

(I)

In the present report, we have used $1,4-\mathrm{BDOAH}_{2}$ and imidazole instead of $1,3-\mathrm{BDOAH}_{2}$ and 2,2-bipy in the reaction and synthesized a new $\mathrm{Cu}^{\mathrm{II}}$ polymer, viz. $[\mathrm{Cu}(1,4-$ BDOA $\left.)\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]_{n}$, (I), the crystal structure of which is described here.

Received 4 August 2004 Accepted 10 August 2004 Online 13 August 2004

Figure 1
ORTEPII plot (Johnson, 1976) of the title complex, with displacement ellipsoids shown at the 30% probability level.

Figure 2
Packing diagram of the title complex. H bonds are indicated by dashed lines and all $\mathrm{C}-\mathrm{H} \mathrm{H}$ atoms are omitted for clarity.

As illustrated in Fig. 1, the carboxylate group is bound to the $\mathrm{Cu}^{\text {II }}$ atom in the monodentate fashion. Each $\mathrm{Cu}^{\mathrm{II}}$ ion displays a five-coordinate distorted square-pyramidal configuration, defined by two N atoms from two imidazole ligands [mean $\mathrm{Cu}-\mathrm{N}=1.990$ (3) \AA], two carboxyl O atoms from the 1,4-BDOA ligand and one water molecule. Atoms O1, O5, N1 and N3 define a square plane [r.m.s. $=0.01(4) \AA$], in which the $\mathrm{Cu}^{\text {II }}$ deviates by 0.09 (5) \AA from the plane, whilst the water molecule $(\mathrm{O} 1 W)$ occupies the apical site, with a $\mathrm{Cu}-\mathrm{O} 1 W$ bond distance of 2.243 (2) \AA. The $\mathrm{Cu}-\mathrm{O}_{\text {carboxyl }}$ distances are 1.994 (2) and 2.005 (2) \AA, which are longer than the corresponding $\mathrm{Cu}-\mathrm{O}$ distances of 1.957 (3) and 1.941 (3) \AA in (II). This is also reflected by the fact that the two oxyacetate groups are substantially twisted out the benzene ring plane in (I), with the $\mathrm{C} 9-\mathrm{O} 3-\mathrm{C} 8-\mathrm{C} 7$ and $\mathrm{C} 12-\mathrm{O} 4-\mathrm{C} 15-\mathrm{C} 16$ torsion angles being -71.9 (4) and 74.8 (3) ${ }^{\circ}$, respectively, whereas the torsion angles of the two oxyacetate groups and phenyl ring in (II) are 163.4 (3) and -82.0 (3) ${ }^{\circ}$, respectively, and suggest the $1,4-\mathrm{BDOA}^{2-}$ ligand has more conformational flexibility than that of the $1,3-\mathrm{BDOA}^{2-}$ ligand.

It should be noted that the $\mathrm{O} 1-\mathrm{C} 7[1.263$ (4) $\AA]$ and $\mathrm{O} 5-$ C16 [1.278 (4) \AA] distances are longer than the $\mathrm{O} 2-\mathrm{C} 7$ [1.237 (4) Å] and O6-C16 [1.222 (4) Å] distances, in accord with greater double-bond character of the latter bonds. The dihedral angles between two imidazole molecules and benzene rings are $30.6(3)$ and $83.4(3)^{\circ}$, and the dihedral angle between the two imidazole ligands is 81.9 (3) ${ }^{\circ}$.

Each 1,4-BDOA ${ }^{2-}$ group serves as a bidentate ligand to link two $\mathrm{Cu}^{\text {II }}$ atoms, giving rise to a one-dimensional zigzag chain structure. In the chain, the adjacent $\mathrm{Cu} \cdots \mathrm{Cu}$ distance is
12.656 (5) \AA, while the interval $\mathrm{Cu} \cdots \mathrm{Cu}$ distance within the chain is 21.285 (5) \AA. Furthermore, the chains are connected through intermolecular hydrogen bonds involving the uncoordinated imidazole N atoms, the coordinated water molecule, carboxyl O atoms and ether O atoms of the $1,4-\mathrm{BDOA}^{2-}$ groups, leading to a three-dimensional hydrogen-bonding network (for details, see Table 2 and Fig. 2).

Experimental

Benzene-1,4-dioxyacetic acid was prepared following the method described for the synthesis of benzene-1,2-dioxyacetic acid by Mirci (1990). The title complex was prepared by the addition of a stoichiometric amount of $\mathrm{Cu}(\text { acetate })_{2} \cdot \mathrm{H}_{2} \mathrm{O}(2.00 \mathrm{~g}, 10 \mathrm{mmol}), \mathrm{NaOH}$ ($0.80 \mathrm{~g}, 20 \mathrm{mmol}$) and imidazole $(1.36 \mathrm{~g}, 20 \mathrm{mmol})$ to a hot aqueous solution of 1,4- $\mathrm{BDOAH}_{2}(2.26 \mathrm{~g}, 10 \mathrm{mmol})$, with subsequent filtration. Blue crystals were obtained at room temperature over several days. Analysis calculated for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{CuN}_{4} \mathrm{O}_{7}$: C 43.49, H 4.11, N 12.68%; found: C $43.31, \mathrm{H} 4.02$, N 12.75%.

Crystal data

$$
\begin{aligned}
& {\left[\mathrm{Cu}\left(\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{O}_{6}\right)\left(\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{~N}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]} \\
& M_{r}=441.89 \\
& \text { Monoclinic, } P 2_{1} / n \\
& a=16.699(3) \AA \\
& b=6.0327(12) \AA \\
& c=18.977(4) \AA \\
& \beta=107.06(3)^{\circ} \\
& V=1827.6(7) \AA^{3} \\
& Z=4
\end{aligned}
$$

$$
D_{x}=1.606 \mathrm{Mg} \mathrm{~m}^{-3}
$$

Mo $K \alpha$ radiation
Cell parameters from 10508 reflections
$\theta=3.2-27.5^{\circ}$
$\mu=1.24 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, blue
$0.39 \times 0.25 \times 0.18 \mathrm{~mm}$

Data collection

Rigaku R-AXIS RAPID
diffractometer
ω scans
Absorption correction: multi-scan (ABSCOR; Higashi, 1995)
$T_{\min }=0.643, T_{\max }=0.807$
11517 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.109$
$S=1.05$
4153 reflections
265 parameters
H atoms treated by a mixture of independent and constrained refinement

4153 independent reflections
3177 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.039$
$\theta_{\text {max }}=27.5^{\circ}$
$h=-21 \rightarrow 21$
$k=-7 \rightarrow 7$
$l=-24 \rightarrow 24$

$$
\begin{aligned}
& w=1 /[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0548 P)^{2} \\
&+0.7112 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
&(\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.42 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}
\end{aligned}
$$

Table 1

Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 1$	$1.987(3)$	$\mathrm{O} 1-\mathrm{C} 7$	$1.263(4)$
$\mathrm{Cu} 1-\mathrm{N} 3$	$1.994(2)$	$\mathrm{O} 2-\mathrm{C} 7$	$1.237(4)$
$\mathrm{Cu} 1-\mathrm{O} 1$	$1.994(2)$	$\mathrm{O} 5-\mathrm{C} 16$	$1.278(4)$
$\mathrm{Cu} 1-\mathrm{O} 5$	$2.005(2)$	$\mathrm{O} 6-\mathrm{C} 16$	$1.222(4)$
$\mathrm{Cu} 1-\mathrm{O} 1 W$	$2.243(2)$		
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 3$	$173.5(1)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{O} 5$	$90.6(1)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1$	$91.9(1)$	$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{O} 1 W$	$91.4(1)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 5$	$88.8(1)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 5$	$175.1(1)$
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1 W$	$95.1(1)$	$\mathrm{O} 1-\mathrm{Cu} 1-\mathrm{O} 1 W$	$92.63(9)$
$\mathrm{N} 3-\mathrm{Cu} 1-\mathrm{O} 1$	$88.2(1)$	$\mathrm{O} 5-\mathrm{Cu} 1-\mathrm{O} 1 W$	$92.14(9)$

Table 2
Hydrogen-bonding geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	D-H	H \cdots A	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 2-\mathrm{H} 17 \cdots \mathrm{O} 2^{\text {i }}$	0.89 (4)	1.98 (4)	2.829 (4)	160 (4)
N4-H18 \cdots O $5^{\text {ii }}$	0.89 (3)	1.98 (3)	2.874 (3)	173 (4)
$\mathrm{O} 1 W-\mathrm{H} 1 W 1 \cdots \mathrm{O} 2^{\text {iii }}$	0.85 (3)	1.94 (3)	2.780 (3)	169 (3)
$\mathrm{O} 1 W-\mathrm{H} 1 W 2 \cdots \mathrm{O}^{\text {iii }}$	0.85 (3)	1.91 (3)	2.745 (3)	167 (3)

C-bound H atoms were placed in calculated positions, with $\mathrm{C}-\mathrm{H}=$ 0.93 (aromatic) or $0.97 \AA$ (aliphatic) and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\mathrm{eq}}(\mathrm{C})$, and were refined in the riding-model approximation. The water H atoms and the imidazole $\mathrm{N}-\mathrm{H}$ atoms were located in a difference Fourier map and refined with $\mathrm{O}-\mathrm{H}, \mathrm{H} \cdots \mathrm{H}$ and $\mathrm{N}-\mathrm{H}$ distance restraints of 0.85 (1), 1.39 (1) and $0.90(1) \AA$, respectively, and with $U_{\text {iso }}(\mathrm{H})=$ $1.5 U_{\text {eq }}(\mathrm{O}, \mathrm{N})$.

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalStructure (Rigaku/MSC, 2002); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEPII (Johnson, 1976); software used to prepare material for publication: SHELXL97.

The authors thank the National Natural Science Foundation of China (No. 20101003), Heilongjiang Province Natural Science Foundation (No. B0007), the Scientific Fund of Remarkable Teachers of Heilongjiang Province, and Heilongjiang University for supporting this work.

References

Gao, S., Li, J. R., Liu, J. W. \& Huo, L. H. (2004). Acta Cryst. E60, m113-m115. Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Liu, J. W., Huo, L. H., Gao, S., Zhao, H., Zhu, Z. B. \& Zhao, J. G. (2004). Wuji Hиaxue Xuebao (Chin. J. Inorg. Chem.), 20, 707-710.
McCann, M., Devereux, M., Cardin, C. \& Convery, M. (1994). Polyhedron, 13, 221-226.
Mirci, L. E. (1990). Rom. Patent No. 0743205.
Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
Rigaku/MSC (2002). CrystalStructure. Rigaku/MSC, 9009 New Trails Drive, The Woodlands, TX 77381, USA.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Smith, G., Bott, R. C., Sagatys, D. S. \& Kennard, C. H. L. (1991). Polyhedron, 10, 1565-1568.

